Важным параметром оптического волокна является дисперсия, которая определяет его информационную пропускную способность.

По оптическому волокну передается не просто световая энергия, но также полезный информационный сигнал. Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом уширении импульсы начинают перекрываться, так что становится невозможным их выделение при приеме (рисунок 3).

Рисунок 3 - Влияние дисперсии

Дисперсия -- это рассеивание во времени спектральных или модовых составляющих оптического сигнала, которое приводит к увеличению длительности импульса оптического излучения при распространении его по ОВ и определяется разностью квадратов длительностей импульсов на выходе и входе 0В:

Чем меньше значение дисперсии, тем больший поток информации можно передать по волокну. Дисперсия не только ограничивает частотный диапазон ОВ, но существенно снижает дальность передачи сигналов, так как чем длиннее линия, тем больше увеличение длительности импульсов.

Дисперсия в общем случае определяется тремя основными факторами:

Различием скоростей распространения направляемых мод (межмодовой дисперсией),

Направляющими свойствами оптического волокна (волноводной дисперсией),

Параметрами материала, из которого оно изготовлено (материальной дисперсией).


Рисунок 4 - Виды дисперсии

Основными причинами возникновения дисперсии являются, с одной стороны, большое число мод в ОВ (межмодовая дисперсия), а с другой стороны - некогерентность источников излучения, реально работающих в спектре длин волн (хроматическая дисперсия).

Межмодовая дисперсия

Она преобладает в многомодовых ОВ и обусловлена отличием времени прохождения мод по ОВ от его входа до выхода. Для ОВ со ступенчатым профилем показателя преломления скорость распространения электромагнитных волн с длиной волны одинакова для всех мод.Различие путей распространения направляемых мод на фиксированной частоте (длине волны) излучения оптического источника приводит к тому, что время прохождения этих мод по ОВ различно. В результате образуемый ими импульс на выходе ОВ уширяется. Величина уширения импульса равна разности времени распространения самой медленной и самой быстрой мод. Указанное явление носит название межмодовой дисперсии.

Формулу расчета межмодовой дисперсии можно получить, рассматривая геометрическую модель распространения направляемых мод в ОВ. Любая направляемая мода в ступенчатом ОВ может быть представлена световым лучом, который при движении вдоль волокна многократно испытывает полное внутреннее отражение от поверхности раздела «сердцевина-оболочка». Исключением является основная мода НЕ 11 , которая описывается световым лучом, движущимся без отражения вдоль оси волокна.

При длине ОВ, равной L, длина зигзагообразного пути, пройденного лучом света, распространяющимся под углом и z к оси волокна, составляет L/cos и z (рисунок 5).


Рисунок 5 - Пути распространения световых лучей в двухслойном ОВ

Скорость распространения электромагнитных волн с длиной волны л одинакова в рассматриваемом волокне и равна:

где с - скорость света, км/с.

Обычно в ОВ n 1 ? n 2 , поэтому принимает вид:

где - относительное значение показателей преломления сердцевина-оболочка.

Из формулы видно, что уширение импульсов, обусловленное межмодовой дисперсией, тем меньше, чем меньше разность показателей преломления сердцевины и оболочки. Это одна из причин, почему в реальных ступенчатых ОВ эту разность стремятся сделать как можно меньше.

На практике же из-за наличия неоднородностей (главным образом, микроизгибов) отдельные моды при прохождении по ОВ воздействуют друг на друга и обмениваются энергией.

Межмодовую дисперсию в ступенчатых ОВ можно полностью исключить, если соответствующим образом подобрать структурные параметры ОВ. Так, если сделать размеры сердцевины и? настолько малыми, то по волокну будет распространяться на несущей длине волны только одна мода, т. е. модовая дисперсия будет отсутствовать. Такие волокна называются одномодовыми. Они имеют наибольшую пропускную способность. С их помощью могут быть организованы большие пучки каналов на магистралях связи.

Дисперсия импульсов может быть также существенно уменьшена за счет соответствующего выбора профиля преломления по сечению сердцевины ОВ. Так, дисперсия уменьшается при переходе к градиентным ОВ. Межмодовая дисперсия градиентных ОВ, как правило, ниже на порядок и более чем у ступенчатых волокон .

В таких градиентных ОВ в противоположность ОВ со ступенчатым профилем распространения, лучи света распространяются уже не зигзагообразно, а по волно- или винтообразным спиральным траекториям.

Хроматическая дисперсия состоит из материальной и волноводной составляющих и имеет место при распространении как в одномодовом, так и в многомодовом волокне. Однако наиболее отчетливо она проявляется в одномодовом волокне из-за отсутствия межмодовой дисперсии.

Материальная дисперсия обусловлена зависимостью показателя преломления волокна от длины волны. В выражение для дисперсии одномодового волокна входит дифференциаль­ная зависимость показателя преломления от длины волны:

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны

где введены коэффициенты М(λ) и N (λ) – удельные материальная и волноводная дисперсии соответственно, а Δλ , (нм) – уширение длины волны вследствие некогерентности источника излучения. Результирующее значение коэффициента удельной хроматической дисперсии определяется как D (λ) = М(λ) + N (λ) . Удельная дисперсия имеет размерность пс/(нм·км). Если коэффициент волноводной дисперсии всегда больше нуля, то коэффициент материальной дисперсии может быть как положительным, так и отрицательным. И здесь важным является то, что при определенной длине волны (примерно 1310 ± 10 нм для ступенчатого одномодового волокна) происходит взаимная компенсация М(λ) и В(λ) , а результирующая дис персия D (λ) обращается в ноль. Длина волны, при которой это происходит, называется дли ной волны нулевой дисперсии λ0 . Обычно указывается некоторый диапазон длин волн, в пре­делах которых может варьироваться λ0 для данного конкретного волокна.

Фирма Corning использует следующий метод определения удельной хроматической дисперсии. Измеряются задержки по времени при распространении коротких импульсов све­та в волокне длиной" не меньше 1 км. После получения выборки данных для нескольких длин волн из диапазона интерполяции (800-1600 нм для MMF, 1200-1600 нм для SF и DSF) делает­ся повторная выборка измерения задержек на тех же длинах волн, но только на коротком эта­лонном волокне (длина 2 м). Времена задержек, полученных на нем, вычитаются из соответ­ствующих времен, полученных на длинном волокне.



Для одномодового ступенчатого и многомодового градиентного волокна используется эмпирическая формула Селмейера: τ(λ) = А + Вλ2 + С λ-2 . Коэффициенты А, В, С являются подгоночными, и выбираются так, чтобы экспериментальные точки лучше ложились на кривую τ(λ) , рисунок 7. Тогда удельная хроматическая дисперсия вычисляется по формуле:

Рисунок 7 – Кривые временных задержек и удельных хроматических дисперсий для: а) многомодового градиентного волокна (62,5/125);

б) одномодового ступенчатого волокна (SF);

в) одномодового волокна со смещенной дисперсией (DSF)

Поляризационная модовая дисперсия

Поляризационная модовая дисперсия τ pmd – возникает вследствие различной скорости распространения двух взаимно перпендикулярных поляризационных составляющих моды. Коэффициент удельной дисперсии Тнормируется в расчете на 1 км и имеет размерность (пс / ), aτ pmd растет с ростом расстояния по закону . Для учета вклада в результирующую дисперсию следует добавить слагаемое в правую часть (15). Из-за небольшой величины τpmd может проявляться исключительно в одномодовом волокне, причем когда используется передача широкополосного сигнала (полоса пропускания 2,4 Гбит/с и выше) с очень узкой спектральной полосой излучения 0,1 нм и меньше. В этом случае хроматическая дисперсия становится сравнимой с поляризационной модовой дисперсией.

В одномодовом волокне в действительности может распространяться не одна мода, а две фундаментальные моды – две перпендикулярные поляризации исходного сигнала. В идеальном волокне, в котором отсутствуют неоднородности по геометрии, две моды распространялись бы с одной и той же скоростью, рисунок 8 а. Однако на практике волокна имеют не идеальную геометрию, что приводит к различной скорости распространения двух поляризационных составляющих мод, рисунок 8 б.


Рисунок 8 – Появление поляризационной модовой дисперсии.

Избыточный уровень τ pmd , проявляясь вместе с чирпированным модулированным сигналом от лазера, а также поляризационной зависимостью потерь, может приводить к временным колебаниям амплитуды аналогового видеосигнала. В результате ухудшается качество изображения, или появляются диагональные полосы на телевизионном экране. При передаче цифрового сигнала высокой полосы (>2,4 Гбит/с) из-за наличия τ pmd может возрастать битовая скорость появления ошибок.

Главной причиной возникновения поляризационной модовой дисперсии является нециркулярность (овальность) профиля сердцевины одномодового волокна, возникающая в процессе изготовления или эксплуатации волокна. При изготовлении волокна только строгий контроль позволяет достичь низких значений этого параметра.

Ход работы:

РАСЧЕТ ПАРАМЕТРОВ ОПТИЧЕСКОГО ВОЛОКНА SM - 9/125 ФИРМЫ LUCENT TECHNOLOGIES

2.1 Расчет геометрических параметров оптоволокна

Числовую апертуру волокна рассчитаем по формуле (5). Подставив значения n 1 =1,466 , Δ=0,33 % , получим:

Таким образом, на длине волны 1310 нм (в соответствии с соотношением (8)) в волокне может существовать многомодовый режим, но, как уже говорилось выше, неосновные моды быстрее затухают и при помещении волокна в кабель, который при прокладке будет испытывать изгибы, неосновные моды вырождаются и в волокне будет одномодовый режим.

2.2 Определение длины волны отсечки

Как уже говорилось выше, различают волоконную и кабельную длину волны отсечки. Кабельная определяется экспериментально. Рассчитаем волоконную длину волны отсечки из выражения (12).

Учитывая, что кабельная длина волны отсечки смещена относительно волоконной в сторону более коротких длин волн, это еще раз подтверждает, что на длине волны 1310 нм в волокне, помещенном в кабель будет одномодовый режим.

2.3 Определение затухания в оптоволокне

Как уже писалось выше затухание в волокне складывается из собственных и кабельных потерь. Собственные потери определим из графика на рисунке 5.

Тогда кабельные потери можно определить, как

Общее затухание в волокне составит

Как видно из графика (рисунок 5) наименьшего значения этого показателя можно добиться при работе на длине волны 1550 нм.

2.4 Определение дисперсии и полосы пропускания волокна

Для одномодового режима модовая составляющая дисперсии обращается в 0 . Кроме того, как видно из рисунка 7 б, хроматическая дисперсия в окне прозрачности 1310 нм тоже равна 0 . Таким образом, в этом режиме в волокне будет присутствовать только поляризационная модовая дисперсия. Исходя из технических характеристик оптоволокна коэффициент поляризационной модовой дисперсии составляет Т=0,2 пс/√км. Тогда при расчете на L =100 км длины волокна, получим

Гц

С учетом того, что по техническим характеристикам оптоволокна коэффициент поляризационной модовой дисперсии не превышает значения 0,2 пс/√км, величина W =220 ГГц является минимальной полосой пропускания на расстоянии 100 км.

Название, цель работы

Расчет параметров в соответствии с вариантом

Ответы на контрольные вопросы

Контрольные вопросы:

1. Виды одномодовых волокон

2. Факторы, влияющие на распространение света

3. Потери на рассеянии

Наряду с коэффициентом затухания ОВ важнейшим параметром является дисперсия, которая определяет его пропускную способность для передачи информации.

Дисперсия – это рассеяние во времени спектральных и модовых составляющих оптических оптического сигнала, которые приводят к увеличению длительности импульса оптического излучения при распространения его по ОВ.

Уширение импульса определяется как квадратичная разность длительности импульсов на выходе и входе оптического волокна по формуле:

причем значенияи берутся на уровне половины амплитуды импульсов (рисунок 2.8).

Рисунок 2.8

Рисунок 2.8 - Уширение импульса за счет дисперсии

Дисперсия возникает по двум причина: некогерентность источников излучения и существования большого количества мод. Дисперсия, вызванная первой причиной, называется хроматической (частотной) , она состоит из двух составляющих – материальной и волноводной (внутримодовой) дисперсий. Материальная дисперсия обусловлена зависимостью показателя преломления от длины волны, волноводная дисперсия связана с зависимостью коэффициента распространения от длины волны.

Дисперсия, вызванная второй причиной, называется модовой (межмодовой) .

Модовая дисперсия свойственна только многомодовым волокнам и обусловлена отличием времени прохождения мод по ОВ от его входа до выхода. В ОВ со ступенчатым профилем показателя преломления скорость распространения электромагнитных волн с длиной волны одинакова и равна: , где С – скорость света. В этом случае все лучи, падающие на торец ОВ под углом к оси в пределах апертурного угла распространяются в сердцевине волокна по своим зигзагообразным линиям и при одинаковой скорости распространения достигают приемного конца в разное время, что приводит к увеличению длительности принимаемого импульса. Так как минимальное время распространения оптического луча имеет место при падающем луче , а максимальное при , то можно записать:

где L – длина световода;

Показатель преломления сердцевины ОВ;

С – скорость света в вакууме.

Тогда значение межмодовой дисперсии равно:

Модовая дисперсия градиентных ОВ на порядок и более ниже, чем у ступенчатых волокон. Это обусловлено тем, что за счет уменьшения показателя преломления от оси ОВ к оболочке скорость распространения лучей вдоль их траектории изменяется. Так, на траекториях, близких к оси, она меньше, а удаленных больше. Лучи, распространяющиеся кратчайшими траекториями (ближе к оси), обладают меньшей скоростью, а лучи, распространяющиеся по более протяженным траекториям, имеют большую скорость. В результате время рапространения лучей выравнивается, и увеличение длительности импульса становится меньше. При параболическом профиле показателя преломления, когда показатель степени профиля q=2, модовая дисперсия определяется выражением:

Модовая дисперсия градиентного ОВ в раз меньше, чем ступенчатого при одинаковых значениях . А так как обычно , то модовая дисперсия указанных ОВ может отличаться на два порядка.

В расчетах при определении модовой дисперсии следует иметь в виду, что до определенной длины линии называемой длиной связи мод, нет межмодовой связи, а затем при происходит процесс взаимного преобразования мод и наступает установившийся режим. Поэтому при дисперсия увеличивается по линейному закону, а затем, при - по квадратичному закону.

Таким образом, вышеприведенные формулы справедливы лишь для длины . При длинах линий следует пользоваться следующими формулами:

- для ступенчатого световода

- для градиентного световода,

где - длина линии;

Длина связи мод (установившегося режима), равная км – для ступенчатого волокна и км – для градиентного (установлено эмпирическим путем).

Материальная дисперсия зависит от частоты (или от длины волны ) и материала ОВ, в качестве которого, как правило, используется кварцевое стекло. Дисперсия определяется электромагнитным взаимодействием волны со связанными электронами материала среды, которое носит, как правило, нелинейный (резонансный) характер.

Возникновение дисперсии в материале световода даже для одномодовых волокон обусловлено тем, что оптический источник, возбуждающий волокно (светоизлучающий диод – СИД или полупроводниковый лазер ППЛ) формирует световое излучение, имеющее непрерывный волновой спектр определенной ширины (для СИД это примерно нм, для многомодовых ППЛ - нм, для одномодовых лазерных диодов нм). Различные спектральные компоненты светового излучения распространяются с разными скоростями и приходят в определенную точку в разное время, приводя к уширению импульса на приемном конце и, при определенных условиях, к искажению его формы. Показатель преломления изменяется от длины волны (частоты ), при этом уровень дисперсии зависит от диапазона длин волн света, введенного в волокно (как правило, источник излучает несколько длин волн), а также от центральной рабочей длины волны источника. В области I окна прозрачности – более длинны волны (850нм) движутся быстрее по сравнению с более короткими длинами волн (845нм). В области III окна прозрачности ситуация меняется: более короткие (1550нм) движутся быстрее по сравнению с более длинными (1560нм). Рисунок 2.9

Рисунок 2.9 – Скорости распространения длин волн

Длина стрелок соответствует скорости длин волн, более длинная стрелка соответствует более быстрому движению.

В некоторой точке спектра происходит совпадение скоростей. Это совпадение у чистого кварцевого стекла происходит на длине волны нм, называемой длиной волны нулевой дисперсии материала, так как . При длине волны ниже длины волны нулевой дисперсии параметр имеет положительное значение, в обратном случае - отрицательное. Рисунок 2.10

Материальную дисперсию можно определить через удельную дисперсию по выражению:

.

Величина - удельная дисперсия, , определяется экспериментальным путем. При разных составах легирующих примесей в ОВ имеет разные значения в зависимости от (таблица 2.3).

Таблица 2.3 – Типичные значения удельной материальной дисперсии

Волноводная (внутримодовая) дисперсия – этим термином обозначается зависимость задержки светового импульса от длины волны, связанная с изменением скорости его распространения в волокне из-за волноводного характера распространения. Уширение импульсов, обусловленное волноводной дисперсией, аналогично пропорционально ширине спектра излучения источника и определяется как:

,

где - удельная волноводная дисперсия, значение которой представлены в таблице 2.4:

Таблица 2.4

– обусловлена дифференциальной групповой задержкой между лучами с основными состояниями поляризации. Распределение энергии сигнала по различным состояниям поляризации медленно изменяется со временем, например, вследствие изменения температуры окружающей среды, анизотропия показателя преломления, вызванная механическими усилиями.

В одномодовом волокне распространяется не одна мода, как принято считать, а две перпендикулярные поляризации (моды) исходного сигнала. В идеальном волокне эти моды распространялись бы с одинаковой скоростью, однако реальные волокна имеют не идеальную геометрию. Главной причиной поляризационной модовой дисперсии является неконцентричность профиля сердцевины волокна, возникающая в процессе изготовления волокна и кабеля. В результате две перпендикулярные поляризационные составляющие имеют разные скорости распространения, что и приводит к дисперсии (рисунок 2.11)

Рисунок 2.11

Коэффициент удельной поляризационно-модовой дисперсии нормируется в расчете на 1км и имеет размерность . Величина поляризационно-модовой дисперсии рассчитывается по формуле:

Из-за небольшой величины ее необходимо учитывать исключительно в одномодовом волокне, причем, когда используется передача высокоскоростного сигнала (2,5Гбит/с и выше) с очень узкой спектральной полосой излучения 0,1нм и меньше. В этом случае хроматическая дисперсия становится сравнимой с поляризационной модовой дисперсией.

Коэффициент удельной ПМД типового волокна, как правило, составляет .

Импульсы света, последовательность которых определяет информационный поток, в процессе распространения расплываются. При достаточно большом расширении импульсы начинают перекрываться, так что становится невозможным их выделение на приёме.

Дисперсия τ - это рассеяние во времени спектральных и модовых составляющих оптического сигнала, приводящее к расширению длительности импульса на приёме.

Дисперсия определяется как квадратичная разность длительности импульсов на выходе и входе кабеля:

τ(l) = , пс/км. (2.8)

Чем меньше значение дисперсии, тем больше ширина полосы пропускания ОВ, тем больший поток информации можно передать по ОВ.

Максимальная ширина полосы пропускания на 1 километр кабеля обратно пропорциональна дисперсии и приближённо равна:

F = 0, 44/ τ , Гц (2.9)

Дисперсию классифицируют по причинам происхождения следующим образом:

Рисунок 2.11 Виды дисперсии

Результирующая дисперсия определяется из формулы:


Материальная дисперсия обусловлена зависимостью показателя преломления оптического волокна от длины волны λ .

Волноводная дисперсия обусловлена зависимостью коэффициента распространения моды от длины волны λ . Волноводная дисперсия возникает из-за ограничения света направляющей структурой (волокном). Тогда как почти вся энергия в многомодовом ОВ сконцентрирована в относительно большой сердцевине, в одномодовых ОВ свет распространяется и в сердцевине и в оболочке. Единственная направляемая мода может рассматриваться как распространяющаяся со скоростью, определяемой эффективным показателем преломления, большим чем показатель преломления оболочки, но меньшим показателя сердцевины. С ростом длины волны всё больше энергии распространяется в оболочке с малым показателем преломления. В результате получается расширение импульса, зависящее от структуры волокна, т. е.волноводная дисперсия.

    Поляризационно-модовая дисперсия (ПМД) - это дисперсия, вызываемая разностью в скоростях распространения двух основных ортогонально-поляризованных мод, существующих в одномодовом волокне.

Рисунок 2.12 Поляризационно-модовая дисперсия

Наличие ПМД приводит к тому, что результирующий выходной импульс света уширяется по сравнению с входным. Луч света от источника излучения попадает на вход ОВ. При этом возникает явление двойного лучепреломления . Это означает, что внутри ОВ образуется две волны (моды), которые поляризуется в двух ортогональных (взаимно-перпендикулярных) плоскостях и распространяется в виде двух мод одной волны. Из-за физической асимметрии показателя преломления ОВ эти моды одной волны движутся с разной скоростью.

ПМД также может быть возникать в местах соединения волокон или изгибах. ПМД влияет на работу ВОЛС так же, как и хроматическая дисперсия, но механизм уширения импульсов в этих случаях различен.

Существенным отличием ПМД от хроматической дисперсии является тот факт, что влияние хроматической дисперсии в линии можно компенсировать, в то время как методов компенсации влияния ПМД в настоящее время не существует. В прошлом (лет 15 назад) влияние ПМД не принималось во внимание, поскольку скорости передачи, а также расстояния между регенераторами в ВОЛС были относительно невелики. В настоящее время, когда скорости передачи достигают сотен Гбит/с, а расстояния между оптическими регенераторами в ВОЛС - сотен километров, ПМД становится ограничивающим фактором при разработке ВОЛС.

В многомодовых ступенчатых волокнах определяющей является межмодовая дисперсия , которая обусловлена наличием большого числа распространяющихся мод и различиями времен их распространения по волокну, обычно в многогодовом ОВ τ =20÷50 нс/км.

В градиентных ОВ происходит выравнивание времени распространения различных мод и определяющей является материальная дисперсия , τ =3÷5 нс/км.

В ступенчатых одномодовых ОВ проявляется хроматическая (волноводная и материальная) дисперсия , но они почти равны по абсолютной величине и противоположны по фазе в широком спектральном диапазоне (Рис.13) при λ = 1,2 ÷ 1,7 мкм. В одномодовых ОВ τ = 5 -17 пс/км.

Возникновение хроматической дисперсии в материале световода обусловлено тем, что оптический источник, возбуждающий вход ОВ (светоизлучающий диод – СИД или лазерный диод – ЛД), формирует световые импульсы, имеющие непрерывный волновой спектр определенной ширины (например, для СИД это примерно 35-60 нм, для многомодовых лазерных диодов (ММЛД) – 2-5 нм, для одномодовых ЛД (ОМЛД) – 0,01-1нм). Различные спектральные компоненты импульса распространяются с разными скоростями и приходят в определенную точку (к концу волокна) в разное время, приводя к уширению импульса на выходе.

В области от 800 нм до 1270 нм более длинные волны (более красные) движутся по ОВ быстрее по сравнению с более короткими (более голубыми) длинами волн (рисунок 2.13). Например, волны длиной 860 нм распространяются быстрее по стеклянному волокну, чем волны длиной 850 нм. Это связано с тем, что коэффициент преломления стекла в диапазоне от 800 нм до 1270 нм уменьшается с ростом длины волны, (этим же самым явлением объясняется возникновение радуги). Такая дисперсия называется положительной .

В области от 1270 нм до 1700 нм ситуация меняется: более короткие волны движутся быстрее по сравнению с более длинными; волна 1560 нм движется медленнее, чем волна 1540 нм, т.е. коэффициент преломления стекла в диапазоне от 1270 нм до 1700 нм увеличивается с ростом длины волны. Это явление называют аномальной (отрицательной) дисперсией. Отрицательная дисперсия выражается в том, что более «медленные» спектральные составляющие импульса ускоряются, а «быстрые», наоборот замедляются. В некоторой точке спектра происходит совпадение, при этом более голубые и более красные длины волн движутся с одной и той же скоростью. Это совпадение скоростей происходит на длине волны примерно 1270 нм, на этой длине волны материальная дисперсия равна нулю (См. рисунок 2.13 и таблицу 2.1).

Из рисунка 2.13 видно, что на определённой длине волны материальная и волноводная дисперсия противоположны по знаку и равны по величине, т. е. взаимно компенсируются. На этой длине волны хроматическая дисперсия, являющаяся суммой материальной и волноводной дисперсий, равна нулю. Для ОВ эта длина волны - порядка 1312 нм , её называют длиной волны нулевой дисперсии , Таким образом, для одномодового кварцевого волокна хроматическая дисперсия положительна для длин волн λ <1312 нм и отрицательна для длин волн λ >1312 нм, а в окрестности λ = 1312 нм она нулевая.

Таблица 2.1 – Типичные значения удельной материальной дисперсии одномодового ОВ

, мкм

М (), пс/нм*км

В (), пс/нм*км

Материальная и волноводная дисперсии ОВ пропорциональны ширине спектра излучения источника Δλ. Значения этих дисперсий можно определить через удельную дисперсию по формулам:

; (2.11)

(2.12)

где М(λ) – удельная материальная дисперсия, значения которой представлены в таблице 2.1, В(λ) –удельная волноводная дисперсия, значения которой представлены в таблице 2.1,Δλ – ширина спектральной линии источника излучения.Измеряется хроматическая дисперсия в единицах: пс/км.

Известно, что для кварцевых ОВ минимум затухания соответствует длине волны 1,55 мкм и дальность связи на этой длине волны ограничивается хроматической дисперсией. Как следует из рисунка 2.13, обычное одномодовое волокно не обеспечивает минимум дисперсии для λ=1,55 мкм, поэтому были разработаны ОВ со смещенной (Dispersion Shifted) дисперсией, которые отличаются конфигурацией профиля показателя преломления (треугольный профиль).

Рисунок 2.14 – Зависимость материальной, волноводной и результирующей дисперсии от длины волны для ОВ со смещённой дисперсией

На рисунке 2.14 представлены зависимости материальной, волноводной и результирующей дисперсии от длины волны для ОВ со смещённой дисперсией.

При изменении профиля преломления ОВ волноводная дисперсия увеличивается, и компенсация дисперсии осуществляется на другой длине волны – 1,55 мкм, благодаря чему можно оптимизировать ОВ для работы в третьем окне прозрачности, где затухание ОВ минимально.

В результате исследований волокон со смещенной дисперсией было показано, что наилучшие показатели обеспечивают волокна с треугольным профилем, так как они обладают самофокусирующими свойствами и удерживают распространяющиеся лучи в небольшом объеме, прилегающем к оси ОВ.

Хроматическая дисперсия выбрана международным союзом связистов (INU) в качестве критерия для классификации одномодовых оптических волокон. Согласно этому критерию, существует три типа одномодовых оптических волокон:

    Стандартное одномодовое волокно (тип G.652). Это наиболее ходовой тип волокна, используется в мире с 1988 года. Параметры (потери и дисперсия) этого волокна оптимизированы на длину волны 1310 нм (минимум хроматической дисперсии), оно может использоваться и в диапазоне длин волн 1525...1565 нм, где имеет место абсолютный минимум потерь в волокне.

    Одномодовое волокно со смещенной нулевой дисперсией (тип G.653). Называется так потому, что абсолютный минимум хроматической дисперсии путем выбора специальной формы профиля показателя преломления смещен в диапазон длин волн λ = 1550 нм абсолютного минимума потерь в волокне. Волокно G.653 оптимизировано для высокоскоростной передачи на одной длине волны и имеет ограниченные возможности для передачи на нескольких длинах волн.

    Одномодовое волокно со смещенной в область длин волн λ = 1550 нм ненулевой дисперсией (тип G.655). Волокно оптимизировано для высокоскоростной передачи информации на нескольких длинах волн в диапазоне около 1550 нм. Волокно G.655 разработано для волоконно-оптических систем со спектральным уплотнением каналов - DWDM-систем (при работе этих систем нулевая дисперсия может привести к возникновению нелинейных эффектов в ОВ).

Прежде чем рассматривать понятие анализатора хроматической дисперсии, обозначим, какие бывают виды дисперсий в оптическом волокне, что такое хроматическая дисперсия (ХД), из каких составляющих она слагается, какие существуют методы ее измерения.

Виды дисперсий

Различают следующие виды дисперсий в световоде:

    модовая или межмодовая;

    хроматическая (материальная, волноводная);

    поляризационная.

Их сумма образует полную дисперсию в оптоволокне.

Хроматическая дисперсия

Хроматическая дисперсия оказывает влияние на производительность системы. Явление хроматической дисперсии возникает по причине того, что распространение длин волн в оптическом волокне происходит с немного отличной друг от друга скоростью. Как результат, возникает затянутый, а потому неэффективный импульс. Когда значение ХД слишком большое, происходят перекрестная модуляция и потери сигнала. В то же время небольшие контролируемые значения хроматической дисперсии нужны, чтобы устранять нежелательные нелинейные эффекты, такие как четырехволновое смешение.

Для стекла, которое используется при изготовлении оптического волокна, важная характеристика – дисперсия показателя преломления (материальная дисперсия). Она проявляется в зависимости скорости распространения оптического сигнала от длины волны. Помимо того, в момент производства при вытягивании кварцевой нити из стеклянной заготовки возникают различной степени отклонения как по геометрии волокна, так и в радиальном профиле показателя преломления. Геометрия + отклонения от идеального профиля вносят свой существенный вклад в вышеназванную зависимость скорости распространения оптического сигнала от длины волны – это уже называется волноводной дисперсией.

Хроматическая дисперсия является совместным влиянием материальной и волноводной дисперсий.

ХД наблюдается при распространении светового сигнала как в одно-, так и в многомодовом волокне. Но наиболее четко проявляется она в одномоде по причине отсутствия в нем межмодой дисперсии.

Методы измерения ХД

Стандартом ГОСТ Р МЭК 60793-1-42-2013 определяются следующие методы:

    фазового сдвига;

    спектральной групповой задержки во временной области;

    дифференциального фазового сдвига;

    интерферометрии.

Анализатор хроматической дисперсии

Анализаторы ХД можно условно разделить на стационарные и полевые.

В настоящее время измерение хроматической дисперсии становится все более критичным для телекомкомпаний и провайдеров, ищущих способы улучшения своих систем путем модернизации их скорости передачи. Современные анализаторы хроматической дисперсии отличаются высокой производительностью, позволяя проводить все виды измерений ХД, в том числе в полевых условиях.

Например, анализатор хроматической дисперсии FTB-5800 производства компании EXFO для всестороннего тестирования ХД в полевых условиях определяет ее посредством метода фазового сдвига . От источника, расположенного с одной стороны линии связи, в оптическое волокно посылается модулированный световой сигнал. На другую сторону данной линии связи различные длины волн приходят с разными сдвигами фаз. Путем измерения этих сдвигов происходит вычисление соответствующих временных задержек и определение значения ХД.

Другие методы измерения ХД

Различают также такой метод, как измерение времени полета (FOTR-168). Например, на нем основана измерительная система CD-OTDR на базе , что позволяет проводить оценку хроматической дисперсии отдельных волокон. При тестировании используется одно волокно и множество длин волн, что определяет увеличение точности измерения, а также сокращение времени тестирования.

Еще один метод – импульсный , регламентированный стандартом ITUT G650. Импульсный метод характеризуется прямым измерением задержки импульсов света с различными длинами волн при прохождении через оптическое волокно заданной длины.